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A transonic flow around a symmetric airfoil with a concavity in its central part has been numerically inves-
tigated. The dependences of the lift coefficient on the Mach number of the incident flow M∞ and on the angle
of attack α were determined. It is shown that, depending on M∞, in the flow past the upper part of the indi-
cated airfoil there can arise one or two supersonic-flow regions. It has been established that, at fairly large
angles of attack, the coalescence and separation of supersonic-flow regions are realized in a discrete way.
For these angles of attack, singular Mach numbers Ms, in the neighborhood of which the structure of the flow
is transformed, were determined and the physical processes occurring in this case were analyzed. It was
found that the flow being considered is characterized by a large hysteresis in M∞.

Introduction. In a high-velocity subsonic flow around an airfoil there can arise a supersonic-flow region (su-
personic region) in the near-airfoil zone. If an airfoil has a small concavity in its central part, several (two or more)
supersonic regions can arise at its lower and upper sides. It has been established [1] that a change in the Mach num-
ber of the incident flow M∞ can cause a restructuring of the pattern of the flow near the airfoil. An increase in M∞
causes the coalescence of supersonic regions into one region, and a supersonic region separates into subregions of
smaller dimensions when M∞ decreases.

In [1–3], a transonic flow in a channel with a bump, simulating an airfoil, was numerically investigated. It
has been established in these works that a steady flow in this channel changes in a discrete way when supersonic re-
gions coalesce or separate and that there exist singular (in the terminology of [1–3]) Mach numbers M∞ = Ms, in the
neighborhood of which the indicated flow experiences structure transformations, i.e., becomes structurally unstable; this
phenomenon was called the structural instability. The data obtained in [1–3] aid in understanding the reasons for the
nonuniqueness of transonic flows, noted earlier by other authors [4, 5].

Airfoils with a concave central part have attracted considerable attention of researchers [6–12] because they
make it possible to attenuate shock waves and their shape can be adapted to the regime of transonic flows around
them. For the purpose of control of flows around these airfoils, it was proposed in [7, 8] to make small-length smooth
bumps near their tail. Then, in [9–12], data on the stability of a flow around such an airfoil were obtained. However,
the physical processes occurring in this case remain unclear. For example, the conclusions made in [10, 12] are some-
what contradictory.

In the present work, we numerically investigated a transonic inviscid flow around a symmetric airfoil with a
concavity in its central part:
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 − 3x
3
 (1 − x)5

] . (1)

The calculations were performed for an incident flow with a Mach number M∞ of 0.8–0.89. These calcula-
tions have shown that in a flow around an airfoil defined by expression (1) there can arise one or two supersonic re-
gions in the upper part of the airfoil and that an increase in the Mach number of the incident flow leads to a
bifurcation of the flow near the airfoil. It has been established that, when M∞ changes, the structure of this flow is
transformed continuously at small angles of attack (α < 0.8) and in a discrete way at large angles of attack. The re-
gimes of flow around the airfoil being considered at α = 1.4 and 1.1 were investigated in detail. For these angles of

Journal of Engineering Physics and Thermophysics, Vol. 80, No. 4, 2007

St. Petersburg State University, 28 Universitetskii Ave., St. Petersburg, 198504, Russia; email: konst20@
mail.ru Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 80, No. 4, pp. 63–68, July–August, 2007. Original article
submitted October 28, 2005.

1062-0125/07/8004-0702 2007 Springer Science+Business Media, Inc.702



attack, Mach numbers of the incident flow M∞, in the small neighborhood of which the flow experiences structure
transformations, were determined. The physical reasons for this phenomenon were analyzed.

Formulation of the Problem. Method of Numerical Investigation.  A two-dimensional inviscid air flow
(with an adiabatic index of 1.4) around a symmetric concave airfoil (1) is considered. The system of Euler equations
is solved using the NSC2KE program (tested many times) based on the finite-volume method of the second order of
accuracy [6]. Calculations are performed on a nonuniform computational C-shaped grid consisting of triangular ele-
ments bunching near the airfoil, in the region of shock waves, and in the wake. The outer boundary of the computa-
tional region is at a distance of 15 chord lengths from the airfoil. Along the outer boundary, 543 nodes are located,
and 76 nodes are in the wake. In the "radial" directions (close to the direction of the normal to the airfoil and the
wake) 159 grid pitches are prescribed. The time integration is performed using the explicit Runge–Kutta algorithm.

The slip condition is set at the surface of the airfoil. At the outer boundary of the airfoil, the angle of attack
α and the Mach number M∞ < 1 are prescribed. Stationary solutions are found by the ascertainment method. In this
case, the initial conditions are the parameters of a uniform flow or the field of a nonuniform flow, obtained by calcu-
lating a flow around the airfoil at other values of M∞ and α.

Discussion of the Results Obtained. 1. Our calculations have shown that, throughout the range of Mach-
numbers being investigated 0.8 ≤ M∞ ≤ 0.89, at angles of attack α = 1.4 and 1.1 at the lower side of the airfoil two
small supersonic regions arise and, at the upper side there can arise a flow with two supersonic regions that coalesce
into one region when M∞ increases. Figure 1 shows the patterns of steady flow at an angle of attack α = 1.4 and an
increasing value of the Mach number. At small values of M∞, two supersonic regions arise at the upper side of the
airfoil. This pattern persists as long as M∞ = 0.807. However, when M∞ increases further (to 0.8073), the two super-
sonic regions coalesce rapidly into one region. Thus, the singular Mach numbers fall within the range 0.807 < M∞ <
0.8073. At an angle of attack α = 1.1, they take values from the range 0.8165 < M∞ < 0.817.

2. The discrete structure transformations of a transonic flow around the airfoil being investigated are usually
accompanied by abrupt large changes in the lift coefficient CL; in this case, CL can change by several times. This is
explained by the large dependence of this parameter on the ratio between the sizes of the supersonic regions at the
upper and lower sides of the air foil — CL can increase sharply when the supersonic regions at the upper side of the

Fig. 1. Isolines of the Mach number M (α = 1.4): M∞ = 0.800 (a), 0.807 (b),
0.8073 (c).
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airfoil coalesce and decrease when a single supersonic region separates into subregions of smaller dimensions or the
supersonic regions at the lower side of the airfoil coalesce.

Figure 2 shows the dependence of CL on the angle of attack α and the Mach number M∞. A peculiarity of
the concave air foil being considered is that CL increases markedly with increase in M∞ even before the supersonic
regions at the upper side of the airfoil begin to coalesce. This is illustrated well by Fig. 2. It is seen from this figure
that, at fairly large angles of attack (α > 0.8), the bifurcation proceeds in a discrete way and, consequently, the curves
α = 1.8, 1.1, and 1.4, forming the surface CL (α, M∞) discontinue. Such behavior of CL is explained by the fact that

Fig. 2. Dependence of the lift coefficient on the angle of attack and the Mach
number.

Fig. 3. Isolines of the Mach number M. Bifurcation of the flow in the case of
increase in M∞ from 0.807 to 0.8073, α = 1.4. Shift of the shock wave down-
stream with change in the inclination of its base (a–c), beginning of the coa-
lescence of supersonic regions (d).

704



the dimensions of the first supersonic region at the upper side of the airfoil (located upstream of it) increase rapidly
with increase in M∞ even before the bifurcation point is attained, which is apparent when the flow patterns in Fig. 1a
and b are compared. In this case, at the angles of attack being considered, an increase in M∞ does not cause a marked
increase in the dimensions of the supersonic regions at the lower side of the airfoil.

It should be noted that, even though the structure of the flow being considered is transformed in a discrete
way at angles of attack α = 1.4 and 1.1 (a discontinuity of the surface CL (α, M∞), Fig. 2) and CL changes abruptly
at a bifurcation point, the discontinuity of the surface CL (α, M∞) is insignificant. This is explained by the fact that
restricting this flow does not cause a very large increase in the dimensions of the supersonic region at the upper side
of the airfoil (Fig. 1b and c).

3. We now consider the structure of the flow near the upper side of the airfoil and its evolution at α = 1.4
in greater detail. At M∞ = 0.800, a shock wave closing the first supersonic region intersects the airfoil surface near
the smallest y coordinate, i.e., at the "bottom" of the concavity. When M∞ increases, the first supersonic region in-
creases and the shock wave SW0, closing this region, shifts downstream (Fig. 1b). As a result of the passage of a su-
personic flow around the concave region of the airfoil surface, there arises a compression wave CW (Fig. 1b).

At M∞ = 0.8073, the flow being considered becomes unstable and, after a number of intermediate unstable
states (Fig. 3), it takes a triple configuration with shock waves: SWh − SW01 − SW0 (Fig. 1c). The separation of the
single shock front closing the first supersonic region and the formation of the λ-like configuration of shock waves can
be explained in the following way. When the dimensions of the first supersonic region increase and the shock wave
closing this region shifts downstream, the near-wall gas flow in the first supersonic region passes over the surface with
a larger curvature because the larger part of the concavity is in the supersonic region. This leads to a gradual enhance-
ment of the compression wave CW. Because of the shift of the shock wave closing the supersonic region downstream,
the point at which the first characteristic of the compression wave attains this shock wave moves away from the sur-
face of the airfoil. As a result, there appears a tendency for the formation of a hanging compression shock SWh (Fig.
1c) characteristic of steady-state regimes with a single supersonic region at the upper side of the airfoil.

The formation of a hanging compression shock near the surface of the airfoil at a small angle of inclination
of the shock wave SW01, closing the first supersonic region, would lead to the formation of a triple configuration
similar to the configuration shown in Fig. 4. In this case, as simple estimates show, after the passage through the two
compression shocks SWh and SW01, the resulting angle θ2 of inclination of the velocity vector would be larger than
the angle θ1 of inclination of the velocity vector of the flow passing through the single compression shock SW0. This
configuration is impossible from the theoretical standpoint. It seems likely that it is precisely the coordination of the
angles of turn of the flows passing below and above the triple point that leads to a change in the angle of inclination
of the shock-wave base. This causes a shift of the shock-wave base downstream and an increase in the angle of its
inclination. After the shock-wave base reaches the sonic line restricting the second supersonic region, the supersonic
regions coalesce into one zone. Thus, the restructuring of the flow leads to the formation of a triple configuration of
shock waves (Fig. 1c).

Fig. 4. Scheme of the triple configuration of shock waves.
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4. The investigation performed in the present work has shown that, at angles of attack α = 1.4 and 1.1, the
stationary solution of the problem being considered depends on the initial conditions. In the neighborhood of Ms there
can arise different steady flows depending on the side (larger or smaller values of M∞) on which Ms is approaches.
Namely, it has been established for α = 1.4 that the scheme of flow with a single supersonic region at the upper side
of the airfoil persists for a certain time when the Mach number decreases from M∞ = 0.808. Figure 5 shows the pat-
tern of a steady flow realized when M∞ = 0.805. When this pattern is compared to the pattern obtained for M∞ in-
creasing to 0.8073 (Fig. 1c), it is apparent that, in the case where M∞ decrease, the depth of the deflection of the
sonic line increases gradually. Moreover, on the sonic line there appears one more deflection that is due to the re-
flected shock wave. This scheme of flow persists as long as M∞ = 0.8046, and at M∞ = 0.804 the supersonic region
separates into two subregions. Therefore, the hysteresis in M∞ is equal to approximately 0.0027. The calculations for
α = 1.1 have shown that the analogous process takes place in the case where M∞ decreases from 0.8157 to 0.8154,
i.e., the hysteresis is small in this case. Thus, a flow around a concave airfoil with a fairly large angles of attack, at
which the structure of the flow transforms in a discrete way, is characterized by a marked hysteresis in M∞, the width
of which increases with increase in the angle of attack.

Conclusions. It is shown that, in the case where an inviscid fluid flows around a concave airfoil, the pattern
of the flow near the airfoil can change in a discrete way when the Mach number of the incident flow changes con-
tinuously. A bifurcation of the flow is accompanied by an abrupt change in the lift coefficient. At angles of attack
α = 1.4 and 1.1 there exist singular Mach numbers Ms, in the neighborhood of which the structure of the flow is
transformed. The values of these numbers were determined and the physical reasons for the bifurcation of the flow
with increase in M∞ were explained.

The author expresses his thanks to A. G. Kuz’min for the computational program put at his disposal, the pro-
posal on the shape of the airfoil investigated, and a useful discussion, and to D. S. Semenov for help in conducting
the calculations.

This work was carried out with financial support from the Russian Foundation for Basic Research (grant No.
05-01-00529).

NOTATION

CL, lift coefficient; M∞, Mach number of the incident flow; Ms, singular Mach number; x, y, Cartesian coor-
dinates; α, angle of attack, deg; θ1, θ2, direction of the velocity vector, deg; SW, shock wave; CW, compression
wave. Subscripts: L, lift coefficient; ∞, point at infinity; s, singular; h, hanging.

Fig. 5. Isolines of the Mach number M under the conditions where M∞ =
0.805, α = 1.4, and there exists a hysteresis of flow in M∞.
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